

TYPE $900-90 \mathrm{~cm}$
TYPE 100-1.0m
TYPE 120-1.2m
SMC ANTENNA WITH AZ/EL CAP MOUNT

VSAT ANTENNA/MOUNT/LNB

LIMITED TWELVE (12) MONTH WARRANTY

DATE	DESCRIPTION	REV.
2/26/90	Changed Pages 4, 6, 7, 8, 9 and 10. ECN 9001516	A
4/20/90	Changed Pages 3, 4, 5, 6, 7, 8, 9 \& 10. ECN 9001550	B
9/10/90	Changed Cover, Pages 1, 6, 7, 12 \& 13. ECN 9001616	c
11/19/90	Changed Cover, Pages $1,3,4,5,6,7,8,0,10,11 \& 13$. ECN 9001665	D
11/4/91	Changed Cover, Pages 1, 2, 3, 4, 6 \& 8-18. ECN 9001881	E
9/93	Changed Cover, Inside Front Cover, Pages 1, 4, 6, 7, 8, 9, 10 \& 11. ECN 9002250	F
10/94	Changed Cover and Page 1. ECN 9002568	G
8/97	All Pages ECN 9003587	H
8/02	Changed Pages 4, 6, 10 \& 12 ECN 9006120	J
9/02	Changed Pages 4, 6, \& 10 ECN 9006205	K
5/04	ECN9006666	

This ANDREW CORPORATION ${ }^{\star}$ equipment is warranted to be free from defects in material and workmanship under normal use and service. ANDREW shall repair or replace defective equipment, at no charge, or at its option, refund the purchase price, the equipment is returned to ANDREW not more than twelve (12) months after shipment. Removal or reinstallation of equipment and its transportation shall not be at the cost of ANDREW except ANDREW shall return repaired or replaced equipmen freight prepaid.
This Warranty shall not apply to equipment which has been repaired or altered in any way so as to affect its stability or durability, or which has been subject to misuse, negligence or accident. This Warranty does not cover equipment which has been impaired by severe nd this Warranty shall not apply to equipment which has been operated or installed other than in accordance with the instructions furnished by ANDREW.
Claimants under this Warranty shall present their claims along with the defective equipment to ANDREW immediately upon failure. Noncompliance with any part of this claim procedure may invalidate this warranty in whole or in part.
THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER AGREEMENTS AND WARRANTIES, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN DURATION TO THE DURATION OF THIS WARRANTY. ANDREW DOES NOT AUTHORIZE ANY PERSON TO ASSUME FORIT THE OBLIGATIONS CONTAINED IN THIS WAR RANTY AND ANDREW NEITHER ASSUMES NOR AUTHORIZES ANY REPRESENTATIVE OR OTHE PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN CONNECTION WITH THE EQUIPMENT DELIVERED OR PROVIDED.
N NO EVENT SHALL ANDREW BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE, INTERRUPTION OF BUSINESS, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND.
In no event shall ANDREW be liable for damages in an amount greater than the purchase price of the equipment.
some states do not allow limitations on how long an implied warranty lasts, or allow the exclusion or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply to you

M6 x 30mm Hex Head Bolt

M4 x 12mm Phillips Head Screw

M4 x 10mm Phillips Head Screw

M8 x 60mm Round Head Square Neck Bolt

M6 Tapping Screw

M8 x 20mm Round Head Square Neck Bolt

M8 x 30mm Round Head Square Neck Bolt

Washer, Flat - $1 / 4^{\prime \prime}$ x 3/4" OD

Washer, Flat - $1 / 4^{\prime \prime}$ x 7/8" OD

DANGER!!!

WATCH FOR WIRES! Installation of this product near power lines is dangerous. For your own safety, follow these important safety rules.

1. Perform as many functions as possible on the ground.
2. Watch out for overhead power lines. Check the distance to the power lines before starting installation. We recommend you stay a minimum of 6 meters (20 feet) from all power lines
3. Do not use metal ladders.
4. Do not install antenna or mast assembly on a windy day.
5. If you start to drop antenna or mast assembly, get away from it and let it fall.
6. If any part of the antenna or mast assembly comes in contact with a power line, call your local power company. DO NOT TRY TO REMOVE IT YOURSELF! They will remove it safely.
7. Make sure that the mast assembly is properly grounded.

WARNING!!!

Assembling dish antennas on windy days can be dangerous. Because of the antenna surface, even slight winds Assembling dish antennas on windy days can be dangerous. Because of the antenna surface, even slight winds
create strong forces. For example, a 1.0 m antenna facing a wind of $32 \mathrm{~km} / \mathrm{h}(20 \mathrm{mph}$) can undergo forces of 269 N
$(60 \mathrm{lbs})$. Be prepared to safely handle these forces at unexpected moments. Do not attempt to assemble, move or create strong forces. For example, a 1.0 m antenna acing a wind of $32 \mathrm{~km} / \mathrm{h}$ (20 mph) can und
(60 lbs). Be prepared to safely handle these forces at unexpected moments. Do no attempt to assemble, move or
mount a dish on windy days or serious, even fatal accidents may occur. ANDREW is not responsible or liable for dammount a dish on windy days or serious, even fatal a
age or injury resulting from antenna installations.

INTRODUCTION

This manual covers the installation of the ANDREW 1.0 m \& For best results in the assembly process, perform each step $1.2 m$ SMC antenna system with AZ/EL cap mount and Ku- in the same sequence as listed in this manual. single polarity feed.

ASSEMBLY TOOLS REQUIRED

The following list of tools are those required for hand assembly and installation of the antenna.

- Ratchet Wrench ($3 / \mathrm{m}^{\prime \prime}$ Drive)
1-10mm Nut Driver
1-13mm Socket (3/8" Drive)
1-13mm Open/Box End Wrench
1 - Phillips Screwdriver

SITE SELECTION

The first and most important consideration when choosing a prospective antenna site is whether or not the area can provide an acceptable "look angle" at the satellites. A site with a clear, unobstructed view from a suitable rof or wall facing south, southeast or southwest is required. Your antenna site must be selected in advance so that you will be able to receive the strongest signal available. To avoid obstructions, it is important to conduct an on-site survey with a portable antenna.

As with any type of construction, a local permit may be required before installing an antenna. It is the owner's responsibility to obtain any and all permits.

BOLT TORQUE

GRADE 8.8 (8G) - YELLOW COLOR						GRADE 2 - SILVER COLOR							
M6	M8	M10	M12	M16	M20	\#10	$1 / 4 \mathrm{IN}$.	5/16 IN.	$3 / 8 \mathrm{IN}$.	$1 / 2 \mathrm{IN}$.	5/8IN.	$3 / 4 \mathrm{IN}$.	1 IN.
7	18	32	58	144	260	32	6	11	20	43	92	124	259
FT-LBS													
9.5	24	43	79	195	353	3.6	8	15	27	58	125	168	351
N -m	N-m	N -m	N-m	N-m	N-m	N -m	(10)I)I)						

GROUND POLE INSTALLATION
23/8" O.D. x 72" LONG

POLE SPECIFICATIONS

2" SCH 40 233/" O.D. x . 154 Wall x 72" Long Steel - CM PN 611652931 w/Oval End and Powder Paint Finish.

1. When wind velocity exceeds 108 MPH on the 90 cm antenna at heights shown, the ground pole must be a heavy wall pipe as follows: $2^{\prime \prime}$ pipe ($2^{3 / 3 / " \text { O O.D.) Schedule } 80}$ Fig. 1.0 to prevent rotation in the concrete or use 3" O.D. ground pole and AZ/EL cap.
2. These charted values based on using Model 611652931 ground pole, 2.375 O.D. x 1.54 wall. When wind velocity exceeds 108 MPH, use $3^{\prime \prime}$ O.D. ground pole and AZ/EL cap.
3. Pole and foundation design based on the following criteria: (a) Uniform Building Code Exposure C and 1.5 stability factor, (b) Vertical soil pressure of 2000 pounds per square foot, (c) Lateral soil pressure of 400 pounds per square foot, (d) Concrete
compressive strength of 2500 pounds per square inc h in 28 days.
4. CAUTION - The foundation design shown does not represent an appropriate design for any specific locality since soil conditions vary and may not meet design criteria given in Note 1. You should consult a local professional engineer to determine your
soil conditions and appropriate foundation.

IG. 1.0

FIG. 4.0 - AZ/EL CAP MOUNT

ITEM	DESCRIPTION	QTY.
1	MOUNT ASSY AZ-EL CAP $2^{7 / 8^{\prime \prime}-3}{ }^{\prime \prime}$ MAST	1
3	CLAMP HALF $278^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{AZ}$-EL	2
4	HOUSING AZ-EL CAP MOUNT	1
5	BOLT, M8 $\times 130 \mathrm{~mm} \mathrm{HEX} \mathrm{HEAD}$	1
6	NUT, SWIVEL, SPECIAL M8	1
7	BOLT, M8 $\times 20 \mathrm{~mm}$, CRG	3
8	BOLT, M8 $\times 30 \mathrm{~mm}$, CRG	4
9	WASHER, $5 / \mathrm{ck}^{\prime \prime}$ FLAT	7
10	NUT, M8, HEX	1
11	WASHER, SPHER., DELRIN	1
12	NUT, M8 ELASTIC STOP (ESNA)	8
13	LABEL, ELEVATION ADJUSTMENT	1

GROUND POLE INSTALLATION
3" O.D. x 68" \& 72" LONG

PIER FOUNDATIONS

R FOUNDATIONS						DEEP FROST LINE FOUNDATIONS				
ANT	WIND VEL.	DIM "L"	DIM "A"	DIM "d"	CONC VOL.	DIM "L"	DIM "A"	DIM "d"	CONC VOL.	GROUND POLE
90 cm	80 MPH	$68{ }^{\prime \prime}$	$37^{\prime \prime}$	$9 "$	$1.5 \mathrm{FT}^{3}$	$68^{\prime \prime}$	$37^{\prime \prime}$	$7{ }^{\prime \prime}$	$1.2 \mathrm{FT}^{3}$	Mo. 611652731 See Note 2
	90 MPH			11"	$2.2 \mathrm{FT}^{3}$			$7{ }^{\prime \prime}$	$1.2 \mathrm{FT}^{3}$	
	110 MPH			$13^{\prime \prime}$	$3.0 \mathrm{FT}^{3}$			$8{ }^{\prime \prime}$	$1.5 \mathrm{FT}^{3}$	
	110 MPH			$15^{\prime \prime}$	$4.0 \mathrm{FT}^{3}$			10"	$2.4 \mathrm{FT}^{3}$	
	125 MPH			$18^{\prime \prime}$	$5.8 \mathrm{FT}^{3}$			$12^{\prime \prime}$	$3.5 \mathrm{FT}^{3}$	
1.0M	80 MPH	$68 "$	$37^{\prime \prime}$	${ }^{10}{ }^{\prime \prime}$	$1.8 \mathrm{FT}^{3}$	$68^{\prime \prime}$	$37^{\prime \prime}$	$7^{\prime \prime}$	$1.2 \mathrm{FT}^{3}$	Mo. 611652731See Note 2
	90 MPH			$13^{\prime \prime}$	$3.0 \mathrm{FT}^{3}$			$8{ }^{\prime \prime}$	$1.5 \mathrm{FT}^{3}$	
	110 MPH			15 "	$4.0 \mathrm{FT}^{3}$			10"	$2.4 \mathrm{FT}^{3}$	
	110 MPH			17"	$5.2 \mathrm{FT}^{3}$			$11^{\prime \prime}$	$2.9 \mathrm{FT}^{3}$	
	125 MPH			$20^{\prime \prime}$	$7.2 \mathrm{FT}^{3}$			$14^{\prime \prime}$	$4.7 \mathrm{FT}^{3}$	
1.2M	80 MPH	72"	39"	$14^{\prime \prime}$	$3.5 \mathrm{FT}^{3}$	$72^{\prime \prime}$	39"	$9{ }^{\text {" }}$	$1.9 \mathrm{FT}^{3}$	Mo. 611685101See Note 2
	90 MPH			$17^{\prime \prime}$	$5.2 \mathrm{FT}^{3}$			$11^{\prime \prime}$	$2.9 \mathrm{FT}^{3}$	
	110 MPH			19"	$6.5 \mathrm{FT}^{3}$			13 "	$4.1 \mathrm{FT}^{3}$	
	110 MPH			$22^{\prime \prime}$	$8.7 \mathrm{FT}^{3}$			$15^{\prime \prime}$	$5.4 \mathrm{FT}^{3}$	
	125 MPH			25 "	$11.2 \mathrm{FT}^{3}$			19 "	$8.7 \mathrm{FT}^{3}$	

POLE SPECIFICATIONS

3" O.D. x . 120 Wall x 68" Long Steel w/Powder Paint Finish - CM PN 611652731
3" O.D. x . 148 Wall x $72^{\prime \prime}$ Long Steel w/Powder Paint Finish - CM PN 611685101.

1. Pole and foundation design based on the following criteria: (a) Uniform Building Code Exposure C and 1.5 stability factor, (b) Vertical soil pressure of 2000 pounds per square foot, (c) Lateral soil pressure of 400 pounds per square foot, (d) Concrete compressive strength of 2500 pounds per square inch in 28 days.
2. If Model 6851 (3 " $\times 72^{\prime \prime}$) is used for 90 cm and 1.0 m Antenna Dimension " B " on pier foundation must be increased by 4 " and concrete volume will increase accordingly.
3. CAUTION - The foundation design shown does not represent an appropriate design for any specific locality since soil conditions vary CAUTION - The foundation design shown does not represent an appropriate design for any specific locality since soil conditions vary and appropriate foundation

The AZ／FL Cap Mount can be installed on a $23 / \mathrm{B}^{\prime \prime}$ or $3^{\prime \prime}$ O．D．ground tube，roof，or wall mount depending on model．The appropriate mount should be assembled and in place before installing the AZ／EL cap．

As the AZ／EL cap mount is factory preassembled，there is no assembly required for the mount．

ASSEMBLING ANTENNA TO CAP MOUNT

nstall four M8 x $60 \mathrm{~mm}\left(23 / 8^{\prime \prime}\right)$ carriage bolts（1）into holes in center of reflector and assemble to cap mount flanges Reference Fig．2．0）Install four lock washers（2）and hex nuts（3）on bolts．Tighten and torque to 11 ft ．－lbs（ $15 \mathrm{~N}-\mathrm{m}$ ）． IMPORTANT！Bottom feed leg hole to be located as shown in Fig．2．0．

INSTALLING CAP MOUNT ON MOUNT TUBE

Lift reflector／cap mount assembly and slide cap mount onto mount tube（Reference Fig．2．1）．Swivel antenna assembly until reflector faces southward．

Tighten M8 clamp nuts so that the antenna assembly is held stationary on tube，but can be swiveled with slight pressure．
FEED AND FEED LEGS INSTALLATION
Assemble feed assembly and feed legs to antenna as shown in Fig．2．2．
Insert bottom feed leg（4）into hole in bottom edge of antenna（5）．NOTE．Bottom feed leg is the one with light bend on one end of leg lance on opposite end and is shorter than the two side legs（6）．
nstall side legs（6）to antenna．From back side of antenna secure with $M 6 \times 30 \mathrm{~mm}\left(1 / 44^{\prime \prime} \times 13 / 6^{\prime \prime}\right)$ hex bolts and $1 / 4$＂special（ $7 / 8^{\prime \prime}$ O．D．）flat washer（7 \＆8）．Do not tighten． Insert bottom leg（4）into hole on center of junction block＊（9）until lance on leg is engaged．
nsert one side leg（6）into junction block＊（9）and secure with M6 x $30 \mathrm{~mm}\left(1 / 4^{\prime \prime} \times 13 / 16^{\prime \prime}\right)$ hex bolts and $1 / 4^{\prime \prime}$ flat washer（7 \＆10）．Do not tighten．
Insert opposite side leg（6）into junction block＊（9） and secure with $M 6 \times 30 \mathrm{~mm}$ hex bolt and $1 / 4 \mathrm{n}$ flat washer （ 7 \＆10）．Tighten and torque bolts securing side legs to junction block and antenna to 4 ft －lbs（ $5.4 \mathrm{~N}-\mathrm{m}$ ）．
Tighten self tapping screw（31）with bottom feed leg make sure screw engages hole in leg）
Refer to feed instructions packed with feed to assemble and install the feed assembly．
＊NOTE：Junction block（9）is packed with feed assembly．

FIG． 2.0 －ASSEMBLING REFLECTOR TO AZ／EL CAP MOUNT

FIG．2．1－INSTALLING ANTENNA／MOUNT ASSEMBLY ONTO MOUNT TUBE

Δ L" IS THE DIFFERENCE BETWEEN THE EARTH STATION ANTENNA SITE LONGITUDE AND THE SATELLITE LONGITUDE

EARTH STATION LATITUDE IN DEGREES NORTH OR SOUTH OF EQUATOR

FIG. 2.2-INSTALLATION OF FEED AND FEED SUPPORT LEGS TO ANTENNA
MPORTANT: Sealing RF coaxial connector:
The copper-plated center conductor in the RF coaxial cable which connects receiver to LNB, can experience electrolysis corrosion at the LNB connector. Moisture and DC curren cause this type of corrosion. To prevent corrosion, apply a moderate coat of silicon grease to the center conductor and hen wrap the entire connection with COAX-SEAL ${ }^{\text {® }}$ tap o seal.
(COAX-SEAL॰ IS A REGISTERED TRADEMARK OF UNIVERSAL ELECTRONICS, INC.)

GROUNDING

ALL INSTALLATIONS TO CONFORM TO
THE LATEST ISSUE OF THE NATIONAL ELECTRIC CODE

Ground pole, antenna mount assembly and feed cables must be grounded in accordance with current Nationa Electric Code and local electric codes to protect from surges due to nearby lightning strikes. The illustration below illustrates a typical grounding method.

Clamps that provide a solid connection between ground wire and ground source should be used.

FIG. 2.3-GROUNDING FEED CABLES

ANTENNA ALIGNMENT PROCEDURE

Alignment with the satellite is obtained by setting polarization, elevation and azimuth. Charts $1,2 \& 3$ are to determine the values for your earth station antenna site, $\Delta \mathrm{L}$ " is the difference between the earth station antenna site longitude and the satellite longitude. Use " LL " and your earth station latitude to obtain polarization, elevation or azimuth setting

POLARIZATION OF FEED

Loosen feed horn M6 clamp bolts (12) and turn feed clockwise or counterclockwise, depending on being eas or west of the satellite as shown on Chart 1. Align marks cala in installed with arrow pointed toward antenn s shown in Fig 3.0. Keep cable groove on header in the down position when adjusting polarization. NOTE Single Polarity Feed is factory assembled for vertical polarity. If horizontal polarity is desired, rotate feed 90° (clockwise or counterclockwise).

ELEVATION

To obtain elevation value for your satellite, refer to char 2. Loosen bolts in curved slots of AZ/EL Housing $1 / 8$ to $1 / 4$ a turn (Ref. Fig. 3.1). Turn elevation adjustment bol o increase elevation Align the edge of clamp with -prease elevalion. Align the edge of Ref. Fig 3.1) NOTE: Degree values shown on eleva ion scale are Beam; that is when the antenna face is vertical mechanical elevation is 0°, while the Beam Elevation (signal) is 22.6°. This will be an approximate setting. Optimum setting achieved when fine tuning Temporarily tighten elevation bracket nuts.

AZIMUTH

Use Chart 3 and determine your azimuth setting. Values in chart must be adjusted for magnetic deviation for you ocation for correct compass reading. Rotate the antenna and mount, pointing it to the correct compass reading fo your location and satellite (Ref. Fig. 3.2). Slowly sweep desired signal is not found increase or decrease elevation setting and repeat the azimuth sweep.

FINE TUNING

Use a signal strength measuring device for final adjust ments to obtain maximum antenna performance Alternate between elevation and azimuth fine tuning to each maximum signal strength until no improvemen an be detected Tighten all hardware Torque for M8 round head, square neck bolts is $15 \mathrm{~N}-\mathrm{m}$ ($11 \mathrm{ft}-\mathrm{lbs}$).

FIG. 3.0 - POLARIZATION OF THE FEED

FIG. 3.1-SETTING ANTENNA ELEVATION

FIG. 3.2-ROTATING ANTENNA FOR AZIMUTH

POLARIZATION CHART

" Δ L" IS THE DIFFERENCE BETWEEN THE EARTH STATION ANTENNA SITE LONGITUDE AND THE SATELLITE LONGITUDE

EARTH STATION LATITUDE IN DEGREES NORTH OR SOUTH OF EQUATOR

